1. MODULAR Ul &
Ul ARCHITECTURES

Deliver modular, reusable Ul components and

robust architectures

TJEERD IN'T VEEN

9 Reusing Views Across Flows

In this chapter

Understanding what makes a view reusable across flows

Common problems that occur in practice
+ Why the navigation-idiom you use isn’t critical for reusable views
+ Decoupling a view from flows by using various implementations:

- Using closures and actions
- Using standalone types or interfaces

Designing a declarative API to offer a configurable view

How to handle optional elements when reusing views

Views are like meerkats. If you see one, there are more nearby, and they need each other to function.

Once we deliver a view, it’s rare they work alone. Often we need to place it in some sort of navigation-
flow; A set up where a user goes from screen to screen to finish a task.

Even if a view does work completely in isolation; It still needs to be inserted, pushed, presented, or
embedded, which is done by another view, window, scene, or screen.

Therefore, placing views forces us to make choices about navigation. However, a common problem
when delivering a screen or view is that it can become tricky to reuse it in different locations.

Now, you might think, “/ don’t need my view to be reused in multiple flows”.

| think that’s fair. Views often start out as part of a single flow. They rarely need to be reusable from the
start.

Unfortunately, requirements can often change, and so might your navigation-flow. In that case, I'd
argue it’s good to consider having a view that you can easily move around in flows.

However, what if | told you that, with a few simple ideas, you can spend the same amount of effort on a
view, and you get reusability for free?

Because it’s more about naming and roles than fancy architectures to make a view reusable, which
we’ll explore in this chapter.

191

Mobile System Design

We already covered how to make self-sufficient views that we can cut and paste from and to different
locations in the app. Continuing with that idea, we’ll cover how to set views up in such a way, so that
it’s easy to place them in various navigation-flows.

NOTE: With this approach, it will even be painless to embed them in other views, which we’ll cover in the
chapter ‘Taming Complex UI"

This chapter is solely focused on making views reusable across any flow, whether they’re pushed on
the stack, presented on top of other views, or even embedded inside larger views. This chapter is not
focused on building a navigation flow itself. We’ll save that for a later chapter.

We start this chapter by looking at the common problems we run into that prevent us from reusing a
view in different flows.

After understanding the problems on a deeper level, we’ll move on to three solutions.

Using the first approach, we’ll decouple views from navigation flows using closures, which we’ll some-
times call actions as a convention for declarative Ul. As we’ll discover, closures are good to get up and
running, but don’t always scale. Especially when dealing with nested views, which are more common
in declarative frameworks.

After covering the trade-offs of the closure solution, we’ll look at a solution when we pass an interface
around. However, merely creating an interface isn’t always enough. We’ll understand why the roles
and names of types become crucial to make this solution work properly.

To finish up the chapter, we’ll deal with optionality. Because reusing a view across flows means that
maybe we want to modify views, such as hiding or changing certain buttons or Ul elements. For this,
we’re going to get fancy and design a declarative API. Not only because it’s fun, but because this offers
an elegant way to keep adding functionality to a view while we build up its complexity.

Before we implement solutions, let’s begin by looking at two common problems that prevent us from
reusing views across flows.

9.1 Common problems

We may see or write code inside a view that manages navigation. But certain problems can sneak in.

As an example, a user might press a close button on a view. Then, depending on how the parent
displays the view, the view may either dismiss itself if it’s presented modally (on top of another view).
Or it might pop itself from the navigation stack if it’s displayed sequentially.

In the next example, we can see how this looks; We have an iOS viewcontroller which represents
a screen. Once a user taps a close button, didPressCloseButton() is called, in which the view

192

Mobile System Design

inspects the view stack to decide whether to dismiss its own presentation, or pop itself off the view
stack.

WARNING: This is an anti-pattern!
class CustomerslLoveHybridViewController: UIViewController {

func didPressCloseButton() {
// Inspect whether this screen is presented.

if self.isBeingPresented || self.presentingViewController !=
nil {
// If presented, dismiss the screen, revealing the screen
below.
self.dismiss(animated: true)
} else {
// If it's not presented, remove it from the navigation
stack.
self.navigationController?.viewControllers.poplLast()
+
}
// ... snip

The idea behind this approach is that this viewcontroller “can take care of itself” regarding navigation,
so that it becomes more self-sufficient, unburdening the parent.

This viewcontroller or “screen” may appear to be more self-sufficient at first. But, this backfires: This
viewcontroller basically becomes a captain of the navigation-ship since it now interferes with the
navigation stack. It becomes too knowledgeable of where and how it is presented.

By having a screen or view mutate the navigation stack, it will most likely interfere with its parent.
Because if a parent is in charge of the navigation stack, this view will now take over, and causes that
parent to be out-of-sync with its own state.

Imagine if all views in a flow mutate the navigation stack independently. Then it will be hard to reason
about a flow, since there is no single “source of truth” for navigation. This makes it very difficult for a
parent flow to keep track of the navigation state and is a surefire way to having bugs.

Not to mention, what if we ever need to embed this view into another? Then it shouldn’t do anything
at all with the navigation stack. Perhaps there shouldn’t be a close button, or perhaps the view should
only be hidden when pressing the close button.

Embedding this view will not work properly in its current state, and will require refactoring to make
this work.

193

Mobile System Design

9.1.1 A smarter, yet still problematic, approach

Let’s take a smarter, common approach and offload navigation functionality to its own type, such as a
coordinator.

NOTE: A Coordinator is a commonly used class that handles the navigation of a flow or app. It is in charge
of maintaining the state of navigation by handling the respective navigation-stack.

In the next example, we pass a coordinator to a view. This view has a button that renders a gear icon
(also known as a cog) for settings. When a user presses on this button, we trigger a specific coordinator
action, such as opening the settings screen via coordinator.openSettings().

WARNING: This example still prevents reusable views!

struct StealingYourDataPermissionView {

// This view has a dependency on a Coordinator
let coordinator: Coordinator

var body: some View {

Button {

// By pressing this button, we tell the coordinator to go
to the settings page.

coordinator.openSettings()

} label: {
// Renders a gear symbol
Image(systemName: "gear")

}

// ... snip
}

// ... snip

This solution is better than before; This view does not know whether it’s presented, and therefore it
doesn’t mutate the view stack.

Unlike before, this view is not trying to be the captain of the navigation ship. It offloads navigation to a
coordinator that has a specific role to handle navigation.

From the view’s perspective, it doesn’t really matter what the coordinator is. It only needs to know it
has navigation-related methods, such as openSettings().

But there are still some problems with this common approach. Let’s review them.

194

Mobile System Design

9.1.2 The view decides what the parent should be

This view still dictates that it requires a coordinator to function, which is a big assumption to make.

Because, what if we want to use it in a flow that doesn’t use coordinators in the first place? What if the
parent flow uses routers? Or just glues things together with method calls? Or what if the parent uses
unsafe string matching to decide the next view to present? Then forcing a parent flow to use, or be, a
coordinator makes little sense.

We could increase the flexibility by making Coordinator an interface, then a parent can figure out
how to implement openSettings().

This is a fair approach. Because usually we can solve tight-coupling by just sticking some interfaces in
our code.

But, somehow, it’s often not enough when this concerns navigation. Because this view would still limit
the flow to coordinators only.

That this view explicitly requires a coordinator creates a situation where a child (the view) decides things
for a parent (such as a flow). It’s like letting a toddler plan the family vacation — chaos guaranteed.

But that’s not the only problem. Let’s understand another issue with this approach, after which we’ll
look at some solutions.

9.1.3 The child orders a parent around

The second problem is that this view now assumes that the gear button should always open the
settings screen. Sinceit callsopenSettings () method directly, the child view is aware of that parent’s
method.

But, imagine if we want to place this view in an entirely different flow, such as an onboarding flow. A
flow where the user is not logged in yet.

Now, this gear button should not open the settings screen, because the user isn’t registered and
therefore can’t even access this screen.

That’s a problem, because this view assumes that the button should always open settings. It’s again a
situation where the child (view) is telling its parent (a flow) what to do.

Maybe in the onboarding-flow, tapping this gear icon should open the device’s location permissions,
instead. But that means that the Coordinator dependency now must support (or be) a variation
where it does something else in this flow.

So either we are introducing a Coordinator interface and we pass different coordinators per flow.
Or, if we have a single coordinator, we’ll be adding an 1 f statement somewhere that says “During

195

Mobile System Design

onboarding, openSettings () opens location permissions. But, after registration when the user is
logged in, openSettings () should open the app’s settings page”.

Alternatively, maybe there should not be a gear icon during the onboarding flow. Then what would we
do?

We could hide the button. But, even if we hid the button, what does this mean for the onboarding flow?
Because now this view has a dependency on a coordinator, despite not needing it. Should it pass a
dummy coordinator that ignores openSettings()? That’s a shoddy solution, too.

And what if, in the future, this view needs to be embedded? Then there shouldn’t be a coordinator here
atall.

Because of the way it works, this view doesn’t “just work” when we move it around across flows.

That this view explicitly calls openSettings () hinders the reusability, since that creates all these
hurdles for parent flows.

In this chapter, we’ll cover some solutions, including one for this scenario, where we defer navigation
actions to a type, such asa Coordinator.

9.2 Preparing for a solution

Now we’ll cover some approaches to make views reusable across flow.

In the previous chapters, we worked on CourseUI and CourseView, and we intentionally didn’t
support navigation back then.

NOTE: If you might recall, CourseView only concerns itself with loading courses, whereas CourseUI
renders the actual Ul and handles the user interaction.

In this chapter, we’ll continue improving these views and make them reusable for navigation flows
using various methods.

We’ll do it in such a way that both CourseUTI and CourseView are unaware of the navigation they’re
used in. This is to keep this feature self-sufficient and flexible to use in any flow.

Ironically, the navigation is irrelevant for this feature. Because after we’re done, we can theoretically
place CourseViewin tons of navigations and even embedded it in other views. Spoiler alert: We will.

196

Mobile System Design

9.2.1 What we need to support

Before we come up with some solutions, let’s look at what we need to support.
We’ll focus on CourseUI. Because we left it in an unfinished state regarding navigation.

CourseUI has four navigation-related actions, namely: joinCall(), openScheduler(),
openMessagelInbox(),and openDetails(todoItem:).

Looking at the implementation of CourseUI, we can see that we implemented these four methods
with placeholder messages, ready to be implemented. Once a user taps the related buttons, these
methods will print debug statements with some information about where to implement it.

struct CourseUI: view {
// ... snip

var body: some View {
// ... snip

// Views such as ScheduleView, refer to the methods such as
joinCall or openSCheduler.
ScheduleView(date: course.calendarEvent?.date, joinCall:
joinCall, openScheduler: openScheduler)
+

// Navigation-specific. Called when user taps on buttons.
private func joinCall() {

print("Implement \(#function) on \(#file), line: \(#line)")
}

private func openScheduler() {
print("Implement \ (#function) on \(#file), Lline: \(#line)")

}

private func openMessageInbox() {
print("Implement \ (#function) on \(#file), Lline: \(#line)")
}

private func openDetails(todoItem: todoItem) {
print("Implement \(#function) on \(#file), line: \(#line)")
}

But, notice a problem (besides the methods not being implemented)? Try to figure it out before reading
on.

The answer is that this view assumes that pressing on a button opens a specific flow. Even if we haven’t
implemented the methods yet, the view calls methods such as joinCall() or openScheduler ().

197

Mobile System Design

To remedy this, the view should only relay the action that happens, so that a parent - such as a
coordinator, or flow, or router - can decide for themselves what to do.

To solve this, let’s rename the methods: joinCall() becomes didPressJoinCall(),
openScheduler () becomes didPressSchedule(),and soon.

struct CourseUI: view {
// ... snip

// Previously joinCall()
private func didPressJoinCall() {

print("Implement \ (#function) on \(#file), line: \(#line)")
}

// Previously openScheduler ()
private func didPressSchedule() {

print("Implement \ (#function) on \(#file), Lline: \(#line)")
}

// Previously openMessageInbox()
private func didPressMessageButton() {

print("Implement \ (#function) on \(#file), Lline: \(#line)")
}

// Previously openDetails(todoItem:)
private func didPressTODOItem(_ todoItem: todoItem) {
print("Implement \ (#function) on \(#file), Lline: \(#line)")
}
}

We are essentially giving the names a lower abstraction. For example, we move from openMessageInbox
() (higher abstraction) to didPressMessageButton() (a lower abstraction). This is the key.

This sets the proper expectations, even when we haven’t implemented the methods. Now, this view is
oblivious to any navigation-aspect, it only focuses on user interaction. This allows a parent to decide
what to do after we finish the implementation.

We now know which actions to support, but we are still printing debug statements. Before we imple-
ment these methods, let’s first continue by designing a solution.

9.3 Considering various solutions

Let’s design how we would implement CourseView from the call-site, or parent’s perspective, then
we can worry about the actual implementation afterwards.

This parent could be anything. Today, it could be a master-detail screen, a tab bar, or
MarketplaceView, but tomorrow it could be a CoursePresenter. Which is why we should

198

Mobile System Design

design CourseView as a standalone view that works regardless of the parent, that makes no
assumptions about navigation.

We can take various approaches to implement navigation triggers; As an example, we could use closures
as actions, or pass around an interface to respond to actions, or declaratively build up a type with a
mix of methods and actions. These approaches are what we’ll cover in this chapter.

But there are more ways; Maybe you want to pass messages, use a central dispatch, orimplement a
router, and so forth.

Whatever approach you prefer, making a view oblivious to navigation is key. This ensures that your
views remain loosely coupled and gives you flexibility to reuse views in various multiple flows, whether
they are the current flows or upcoming flows that may come in the future.

The parent decides the actions - or triggers - when a user presses navigation-specific buttons. All
that CourseViewand CourseUI will communicate in this case is “The user pressed on the messages
button” or “The user pressed on the phone button”.

First, let’s design our solution using closures. Since it’s quite common and fits the declarative approach
well.

9.4 Using closures

One approach is to work with closures. This allows us to decouple the view from its parent, such as a
navigation flow.

The way it works, is that a user will press buttons on the Ul of CourseUT, triggering a closure, which
will forward this to CourseView (since CourseUT is nested).

Then, CourseView will forward these actions to its parent. Again, this parent could be anything, such
as a coordinator or router, or even a feature in an entirely different module.

Other feature, flow, or even
entirely different module

CourseView Initializes
Parent
CourseUl (Such as a flow)
Presses buttons Trigger: didPressPhoneButton() Forwards action openCallFlow()
. Trigger: didPressSchedule() Forwards action openSchedulerFlow()
‘ Trigger: didPressMessage() Forwards action openMessageInbox()
User Trigger: didPressTODOItemDetails() Forwards action openTODOItemDetails()

199

Mobile System Design

NOTE: We can safely assume that CourseUI is hidden from the parent to keep the Course APl smaller
and easier to implement. CourseUT is only to be used by CourseView.

Notice that the parent doesn’t have to share the same action names as CourseUL. It’s likely that the
parent will have higher-abstraction names (suchasopenCallFlow())asopposed to lower-abstraction
names (such asdidPressJoinCall() in CourseUI).

9.5 Aclosure implementation

Following the Holistic-Driven Development approach, let’s design this API from a parent’s perspective.
After that, we’ll dive deeper and update both CourseViewand CourseUT.

Looking at how a parent initializes CourseView, we can see how we would pass the closures. There
are four actions to implement, and we could pass them in the initializer, for instance.

To keep momentum, we’ll use placeholders in this first step.

CourseView(courseService: courseService, ID: ID,

didPressJoinCall: {

print("Implement the action on \(#line)")
}, didPressSchedule: {

print("Implement the action on \(#line)")
}, didPressMessageButton: {

print("Implement the action on \(#1line)")
}, didPressTODOItem: { todoitem 1in

print("Implement the action on \(#line)")

1)

NOTE: How we pass the actions it isn’t too important, and is prone to subjective debates. As long as the
parent handles the navigation, and the view is oblivious, you’re going in the right direction.

By pressing on the buttons, the parent would print out the related line, so that it’s ready to be imple-
mented.

Before we connect these closures to CourseUT, let’s first understand how we would connect a parent
flow to CourseView by removing the placeholders.

9.5.1 When a parent is a coordinator

Often, a parent is a coordinator: A type that glues views together into a specific flow.

For instance, let’s assume we have a CourseCoordinator that sets up a CourseView instance. By
doing so, it glues the CourseView actions to its own methods.

200

Mobile System Design

class CourseCoordinator {

// This method makes a CourseView instance
// We can imagine that it's triggered from a flow
func makeCourseView(courseService: CourseService, ID: UUID) ->
CourseView {
CourseView(courseservice: courseservice, ID: ID,
// We connect the actions to the methods inside this
coordinator
didPressJoinCall: {
openJoinCall()
}, didPressSchedule: {
openScheduler ()
}, didPressMessageButton: {
openMessageInbox()
}, didPressTODOItem: { todoItem 1in
openTODOItemDetails (todoItem)
})

// These methods open other flows. Triggered by CourseView's
actions.

func openJoinCall() {

// ... implementation omitted
}
func openScheduler() {
// ... implementation omitted
}
func openMessageInbox() {
// ... implementation omitted
}
func openTODOItemDetails(_ todoItem: TODOItem) {
// ... implementation omitted
}
// ... snip

Notice how, unlike CourseViiew, this coordinator is aware of the actions that happen after a user
presses a button. For instance, when a user triggers didPressSchedule (), this coordinator knows it
should call openScheduler () and update the navigation stack.

How CourseCoordinator opens a scheduler (or other views) isn’t relevant to CourseView and isn’t
relevant to us in this example. This was one example, but remember, the parent doesn’t have to be a

201

Mobile System Design

coordinator. It can be something else entirely.

Notice that with this approach, we can connect anything to CourseView. Today it’s a coordinator
calling methods such as openJoinCall(), buttomorrow it could be a view that embeds CourseView
that does something else entirely.

Before we move on, let’s clean up the code a bit.

9.5.2 Cleaning up the call-site

By wrapping these methods in a closure, we are adding a layer of indirection for little value. Instead,
we can pass the methods directly without wrapping them in a closure.

Now, instead of calling the methods from the closures, we pass the method names.
class CourseCoordinator {

// This method makes a CourseView instance
// We can imagine that it's triggered from a flow
func makeCourseView(courseService: CourseService, ID: UUID) ->

CourseView {

CourseView(courseservice: courseservice, ID: ID,
didPressJoinCall: openJoinCall,
didPressSchedule: openScheduler,
didPressMessageButton: openMessageInbox,
didPressTODOItem: openTODOItemDetails)

}

// ... snip
}

Before we consider the downsides of the closure-approach, let’s finish this implementation by looking
at how CourseView would connect this to CourseUT.

9.5.3 Gluing everything together

We’ve seen how CourseUT triggers an action (closure), forwards it to CourseView, and then forwards
that to the parent.

To set it up, we flip the diagram. The parent passes an action closure to CourseView, which passes
this closure to CourseUI, which will then use that when a user taps on buttons.

202

Mobile System Design

Other feature, flow, or even

entirely different module

Parent
(Such as a flow) CourseUl

Passes§ action Passes action

openCallFlow() ! didPressPhoneButton()
Passes action Passes action

openSchedulerFlow() 3 didPressSchedule()
Passes action Passes action

openMessageInbox() 3 didPressMessage()

) Passes action Passes action
openTODOItemDetails() : didPressTODOItemDetails()

CourseView

This is how we’ll implement the solution; CourseView will accept closures and forward them to

CourseUI. Then, CourseUI will connect these closures to its Ul elements.

9.5.4 Inside CourseView

Inside CourseView, we would offer these actions as closure properties, which it will pass on to

CourseUI. That means that CourseUTI will now also accept these four actions (closures) to be passed

in.

struct CourseView: View {

// We'll add new actions

var
var
var
var

//

var

didPressJoinCall: () -> Void
didPressSchedule: () -> Void
didPressMessageButton: () -> Void
didPressTODOItem: (TODOItem) -> Void

snip

body: some View {

// We pass the actions to CourseUI.

CourseUI(course: courseBinding,
didPressJoinCallAction: didPressJoinCall,
didPressScheduleAction: didPressSchedule,
didPressMessageButtonAction: didPressMessageButton,
didPressTODOItemAction: didPressTODOItem,

)

// ... snip

203

Mobile System Design

9.5.5 Inside CourseUl

Inside CourseUI, we have four placeholders ready to be implemented.

We can replace the placeholders with the action implementation since it can now call the action
closures.

Notice that we suffix these closures with Action so their names don’t clash with the same-named
methods.

struct CourseUI: View {
// ... snip

// We'll add new actions

var didPressJoinCallAction: () -> Void

var didPressScheduleAction: () -> Void

var didPressMessageButtonAction: () -> Void
var didPressTODOItemAction: (TODOItem) -> Void

var body: some View {
// ... snip

// Views such as ScheduleView, refer to the methods such as
didPressJoinCall

ScheduleView(date: course.calendarEvent?.date, didPressJoinCall
: didPressJoinCall, didPressSchedule: didPressSchedule)

// We trigger these actions by replacing the placeholders with the
actions.

private func didPressJoinCall() {
didPressJoinCallAction()

}

private func didPressSchedule() {
didPressScheduleAction()
}

private func didPressMessageButton() {
didPressMessageButtonAction()

}

private func didPressTODOItem(todoItem: TODOItem) {
didPressTODOItem(todoItem)
}

Now, the closures that are passed from a parent - such as CourseCoordinator - are now connected
to the UI.

204

Mobile System Design

9.5.6 Cleaning up CourseUl

Currently, the methods only call the actions. But there is no added benefit of having these methods,
and all they do is add more indirection, making it harder to follow our code.

Let’s clean this up a bit, and remove this one layer of indirection, like we did before when connecting
methods from the coordinator to CourseView.

First, we can remove the methods, such as didPressSchedule() and didPressJoinCall().

Next, we’ll remove the Action suffix from the closures, since we don’t need to make a distinction
anymore between the action closures and the private methods.

Originally we would pass methods to the views, but now we pass the action closures instead. Notice
that since the closures use the same name as the deleted methods, we don’t need to change how we
pass these closures to the related views.

struct CourseUI: View {
var body: some View {
// ... snip

// Views still refer to the same actions, this disn't changed
ScheduleView(date: course.calendarEvent?.date, didPressJoinCall
: didPressJoinCall, didPressSchedule: didPressSchedule)

// We can delete these now:

// private func didPressJoinCall() {
// didPressJoinCallAction()

/] }

// private func didPressSchedule() {
// didPressScheduleAction()

/] }

// private func didPressMessageButton() {
// didPressMessageButtonAction()

/1 }

// private func didPressTODOItem(todoItem: TODOItem) {
// didPressTODOItem(todoItem)
/] }

// ... snip

205

Mobile System Design

9.5.7 Trade-offs when using closures

Declarative Ul invites us to nest views. but when forwarding closures, it can create more boilerplate as
we experienced.

Closures are great for a few actions. But the problem of using closures is that it doesn’t really scale. We
would have to introduce some boilerplate. Four actions are doable, but imagine having to pass eight
or 12 methods, it can become quite messy.

Another problem is that, the more nested views become, the more we would pass these closures
around. Passing closures from CourseView to CourseUI is one layer deep, but imagine if we went
one level deeper, we would multiply the boilerplate from 8 (2x4) to 12 (3x4) closures.

The more actions we need to pass, and/or the more views become nested, the more closures we have
to pass around. Once the depth or number of actions grows, the more we’re inclined to use a different
solution.

Let’s go over some alternative solutions by first introducing a separate type. After that, we’ll cover a
declarative approach.

9.6 Passing a navigation type

Often, if we’re juggling multiple closures, it might be easier to introduce a separate type to handle the
navigation for us.

This could be many things, such as a class, a struct containing closures, or an interface - known as a
protocol in Swift terms.

However, earlier in this chapter, we covered how passing a coordinator to a view harms its reusability.

Let’s look at this approach in more detail to see how we can still use a separate type to handle our
navigation for us while we keep the ability to reuse a view across flows.

9.6.1 A navigation interface

For instance, instead of a CourseCoordinator class, we may introduce a CourseCoordinator
interface that implements the four navigation methods.

NOTE: In Swift, we declare interfaces using the protocol keyword.

protocol CourseCoordinator {
func joinCall()
func openScheduler ()

206

Mobile System Design

func openMessageInbox()
func openDetails(TODOItem:)

Then we could pass a type conforming to this interface to CourseView.

For example, we may have a CourseFlow class that implements CourseCoordinator. This gets
passed to CourseView. Underwater, CourseView would pass this type to CourseUI, after which
CourseUI would call its methods when a user presses buttons.

Other feature, flow, or even
entirely different module
CourseView

Is passed to CourseView Passes to
CourseFlow »
(CourseView is unaware of this type) CourseUl
CourseCoordinator Calls methods
Implements Interface ‘
joinCall()
openScheduler()

openMessageInbox()

openDetails(TODOItem:)

From the call-site, it would look as simple as passing CourseFlow via an initializer, which I'd argue is
more readable than passing four action closures.

CourseView(courseService: courseService,
ID: ID,
// We now pass a courseFlow instance to CourseView.
coordinator: courseFlow)

Note that CourseViewand CourseUT actions are oblivious to CourseFlLow, they only know that they
receive a type conforming to CourseActions.

By making this an interface, it opens up a lot of flexibility. Now anything that implements this
CourseCoordinator interface can glue together these actions however they wish.

Passing a type is easier than connecting closures together. Let’s say we want to add three more actions,
then we don’t have to keep adding closures to CourseViewand CourseUI. We merely have to define
them on the interface - and ultimately the type that implements it. Which, | would argue, is easier than
passing three more closures to CourseView and CourseUT.

Especially if CourseView changes a lot internally, it’s easier to pass this type around, as opposed to
connecting many closures together, which is as enjoyable as untangling earbud wires.

207

Mobile System Design

9.6.2 The problem of passing a navigation type
One problem we covered is that by using a navigation type, such as a coordinator, a view will make too
many assumptions about how it’s used in a flow.

CourseView now dictates that, in order to use it, we must pass it some kind of coordinator. Even if it’s
a flexible interface, it’s still a coordinator.

But another problem is that CourseUTI is now aware of navigation-specific methods.

Because to use this coordinator, CourseUI would call methods such as coordinator.joinCall()
or coordinator.openScheduler (), which are navigation-specific.

The problem lies mostly in the name and responsibilities. Let’s continue by giving the interface and its
method a better name. This will give us a more flexible view.

9.6.3 The name sets expectations

First, by not calling the interface CourseCoordinator, we can ease that this type “must be a coordi-
nator”.

We could rename it to something more generic, such as CourseNavigation.

It’s better, but the problem remains. The view still assumes that all actions (triggers) are used for
navigation. But that’s not always the case.

What if tapping on ’join call’ should not navigate anywhere?

For instance, if a user presses the ‘join call’ button, a parent flow may decide to show an alert “Warning:
This will start a phone call” instead. As opposed to directly triggering a phone call, scaring millennials.

But it could even be something else; Maybe a parent coordinator may trigger a deep link to Google
Meet or open a contacts screen.

Remember, the goal is that the view has no idea about navigation. So when we pass a navigation object,
coordinator or otherwise, views become aware of navigation.

To solve this, let’s rethink the name. Perhaps we can rename this type related to what a user does, or
the actions. Let’s try CourseActions.

That’s better. We took the navigation-aspect out of it.

But, there is a second problem to solve: The view should not be calling methods such as
openScheduler () or openTODOItemDetails(). Because, as you might recall, the view then
wrongly assumes it triggers navigation-related actions.

208

Mobile System Design

Instead, the method names should reflect something on a lower abstraction. Let’s try something
related to actions.

These actions could be didPressTODOItem() or something like didPressSchedule (), then a par-
ent can freely decide what to do as a response.

Using this knowledge, let’s update the interface name and its methods.

// The interface (protocol) is renamed to something related to actions
protocol CourseActions {

// The method names only infer what a user did. It doesn't dictate

what should open.

func didPressJoinCall()

func didPressSchedule()

func didPressMessageButton()

func didPressTODOItem todoItem:)

Now a parent type, suchasa CourseF low, would implementthe CourseActionsinterface,andimple-
ment methods such as didPressJoinCall(), as opposed to implementing a CourseCoordinator
interface and implementing methods such as openScheduler ().

Other feature, flow, or even
entirely different module

CourseView

Is passed to CourseView Is passed to CourseUl
CourseFlow 1
(CourseView is unaware of this type) | CourseUl

CourseActions
Interface Calls methods

Implements !

« didPressJoinCall()
didPressSchedule()
didPressMessage()

didPressTODOItem()

With our solution, CourseUT is completely oblivious again to navigation. Using proper naming solves
the problem we covered in the beginning of this chapter, because it sets the proper expectations and
fully decouples a view from a parent.

209

Mobile System Design

9.7 Dealing with optionality

We have some excellent tools on our belt to decouple a view from its navigation.

If you want to stop the chapter here, that’s absolutely fine. But if you want to go deeper down the
rabbit hole with me, then let’s consider more approaches to design the APl of CourseView.

Let’s cover what it would look like if methods become optional. Because when we move a view to a
new flow, we might have to tweak or alter a view. Such as hiding or showing specific buttons because
they may not fit the flow.

For fun, let’s get fancy and design a declarative approach. Because a declarative approach embraces
optionality, allowing us to define actions we may or may not implement.

Following the Holistic-Driven Development tradition, we’ll start by designing the API from the call-site.
Then we don’t have to worry about the implementation just yet.

9.7.1 Designing a declarative solution

Notice how in the upcoming example that we can call methods one after another using a declarative
approach.

These methods could be didPressSchedule(action:) ordidPressJoinCall(action:). The
actions inside these methods are closures or methods that we pass.

Also notice that we keep chaining, as opposed to passing closures, in an initializer.
This way, we declaratively “build up” and modify the CourseView type.

// We can chain method calls. We are not passing actions to the

initializer anymore.

CourseView(courseService: courseService, ID: ID)
.didPressJoinCall(action: openCallFlow)
.didPressSchedule(action: openCalendarSchedule)
.didPressMessageButton(action: openChat)
.didPressTODOItem(action: openTODOItemDetails)

Chaining methods fits the declarative paradigm of “building up” a type. This is like chaining modifiers
in Jetpack Compose.

Before thinking about how to implement this solution, let’s consider the implications.

210

Mobile System Design

9.7.2 Reasoning about optionality

One key component to be aware of is that with a declarative style, all these actions are now optional.

For instance, we can decide to only implement the didPressJoinCall(action:) method, but now
we can leave the other methods alone.

CourseView(courseService: courseService, ID: ID)
.didPressJoinCall(action: openCallFlow)

Before, when we pass all actions to the initializer, it’s mandated that we implement all methods. In
fact, the compiler would yell at us if we forgot one, giving us compile-time safety (assuming we don’t
offer default values in the initializer).

With the declarative API, it’s easy to add (or forget) actions. Setting up actions isn’t mandatory any-
more.

We are trading compile-time safety for ergonomics. Because the compiler won’t warn us if we forget an
action. The good news is that we do get flexibility in return.

There are some solutions to deal with optionality:

+ We can embrace optionality by omitting view elements for methods that aren’t called. For
instance, if we don’t implement the didPressMessageButton () method, then we can make
sure that CourseView does not render the message button; This makes CourseView more
configurable if needed.

+ We can add default actions when we don’t implement these actions, such as triggering a /
messages/ URL for deep-linking once a user presses the message button. We can choose to do
this if the parent didn’t configure the didPressMessageButton () method.

« Once a user triggers an action, we can show a debug message telling the developer that some-
thing isn’t implemented yet.

+ We can call an assertion that will crash debug builds to make it explicit that something isn’t
implemented yet.

These are just suggestions to deal with optionality. But the point is, it’s good to know that with a
declarative approach, we are building up a type’s complexity. Meaning that we would support both a
basic and more complex or “decorated” variations.

9.7.3 Embracing optionality

If you're taking a declarative approach, | would recommend to embrace the optionality, as opposed to
throwing errors or warnings when we haven’t implemented an action yet. Because when modifying a

211

Mobile System Design

declarative element, it’s the convention that each individual step is a valid variation.

Forinstance, if we definea Text (“I 1like bagels”), we expectitto be avalid Text view. Then, if
we modify this declaratively, we still consider Text valid after each step.

We can keep decorating the Text element, and in-between each step, it’s convention that the Text
remains a valid Text element or something similar.

Text("I like bagels")
// Still valid
.frame(maxWidth: .infinity, alignment: .leading)
// Still valid
.padding(.leading, 20)
// Still valid
.font(.footnote)
// Still valid
.padding(.bottom, 2)

We should consider the same for the views we offer, where each individual step or modification is a
valid variant. This makes the implementation more configurable and thus more complex, but this is
well-suited if we want that flexibility.

For instance, in each step of the next code listing, CourseView remains a valid version, even if we
don’t configure all actions.

// This is a valid CourseView

CourseView(courseService: courseService, ID: ID)
// Still valid (may now display a phone button)
.didPressJoinCall(action: openCallFlow)
// Still valid (may now display the schedule buttons)
.didPressSchedule(action: openCalendarSchedule)
// Still valid (may now display a message button)
.didPressMessageButton(action: openChat)
// Still valid (may now offer buttons on TODO -items)
.didPressTODOItem(action: openTODOItemDetatils)

That concludes the API design. Let’s go deeper down the rabbit hole once again and look at a way to
implement this.

9.8 Implementing a declarative API

We can enable chaining on the same type by returning the same type again after calling a method on
it.

In other words, when we call a declarative method on CourseView, we need to ensure that it returns

anew CourseView.

212

Mobile System Design

Let’simplement didPressJoinCall() as the first declarative method. We need to ensure it returns
an updated copy of CourseView containing the relevant action.

NOTE: The reason we need to make copies is that SwiftUl views are structs (value types) and not classes
(reference types).

Before we deal with actions, let’s first make an empty implementation to make the compiler happy.
struct CourseView: View {

// This declarative method returns a CourseView 1instance.

func didPressJoinCall(/* The action is undefined for now *x/) ->
CourseView {
// We make a copy
var copy = self

// TODO: We need to modify this copy so it accepts a new action

// We return a copy
return copy

}

// ... rest omitted

Since this method returns a CourseView, we can already start chaining this method if we wanted.
Even if it does nothing yet (because we aren’t passing any actions).

CourseView(courseService: courseService, ID: ID)
// This doesn't do anything, but at least we can chain the method.
// Notice that we aren't passing actions yet.
.didPressJoinCall()
.didPressJoinCall()
.didPressJoinCall()

9.8.1 Glueing the action to the new instances

Now it’s time to connect the action to the copy.

First, we make sure that didPressJoinCall accepts an action as a parameter. Then, to connect the
action, we can set the action to a property of the copy.

Like before, we exit the method by returning the copy. But, this time, the copy contains the action.
struct CourseView: View {

// Now we accept an action.
func didPressJoinCall(action: @escaping () -> Void) -> CourseView {

213

Mobile System Design

var copy = self

// NEW: We set the new action on this copy.
copy.didPressJoinCall = action

return copy

}

// ... snip
}

NOTE: A Swift detail: We need to mark this action as @escaping to show that the closure is stored and
will outlive the method call.

We just set an action on a didPressJoinCall property. To achieve this for all four actions,
CourseView must support these actions as properties. This is very similar to the closures solution
from earlier in this chapter.

However, this time, these actions need to be optional because we might not set all actions. To make
these closures optional in Swift, we need to wrap them in another pair of parenthesis and use the ?
keyword.

struct CourseView: View {

// These actions are now optional.

// We achieve this by wrapping them inside parenthesis, and
suffixing it with the '?'

var didPressJoinCall: (() -> Void)?

var didPressSchedule: (() -> Void)?

var didPressMessageButton: (() -> Void)?

var didPressTODOItem: ((TODOItem) -> Void)?

// ... snip
}

This allows us to set actions as properties. In fact, we can forego the chaining approach and use
properties instead. This will save us from the boilerplate.

// Inside some method

let courseView = CourseView(courseService: courseService, ID: ID)

// We pass the actions as properties

courseView.didPressJoinCall = openCallFlow

courseView.didPressSchedule = openCalendarSchedule

courseView.didPressMessageButton = openChat

courseView.didPressTODOItem = openTODOItemDetails

// But now, depending on the location, you may have to explicitly
return the view.

return courseView

This is still declarative in the sense that we state what we want, and letting CourseView handle the
rest. But this just doesn’t chain the way SwiftUl does.

214

Mobile System Design

It might not be as fancy, but achieves a similar result.

Assigning values to properties are statements, not expressions. Assigning a property returns nothing.
In contrast, the chaining methods always return a new instance of CourseVview.

Because of this, we now need to return the CourseView instance explicitly on the last line.

9.8.2 Implementing all declarative methods

Let’s finish up the declarative implementation. We define the four declarative methods and connect
the respective actions to the copies.

struct CourseView: View {

// These actions are now optional.

var didPressJoinCall: (() -> Void)?

var didPressSchedule: (() -> Void)?

var didPressMessageButton: (() -> Void)?
var didPressTODOItem: ((TODOItem) -> Void)?

// These methods now accept the action to call once they are
triggered.
func didPressJoinCall(action: @escaping () -> Void) -> CourseView {
// We make a copy
var copy = self
// We wire the new action to this method.
copy.didPressJoinCall = action
// We return a copy
return copy

}

func didPressSchedule(action: @escaping () -> Void) -> CourseView {
var copy = self
// We set the didPressSchedule action on the copy
copy.didPressSchedule = action
return copy

}

func didPressMessageButton(action: @escaping () -> Void) ->
CourseView {
var copy = self
// We set the didPressMessageButton action on the copy
copy.didPressMessageButton = action
return copy

}

func didPressTODOItem(action: @escaping (TODOItem) -> Void) ->
CourseView {
var copy = self
// We set the didPressTODOItem action on the copy

215

Mobile System Design

copy.didPressTODOItem = action
return copy

}

// ... rest omitted

This is enough to connect the actions to CourseView. It contains boilerplate, but it’s a good starting
point. Perhaps with some code generators or macro tools, we could improve this solution even
further.

The last piece of the puzzle is to connect this to CourseUTI. Let’s look at that next, after which we’ll be
done.

9.8.3 Connecting to CourseUl

Similar to the closure solution, CourseView still passes the action closures to CourseUl as it did before.
That does mean that CourseUI now must accept optional closures and react such as omitting Ul
elements.

import SwiftUI
struct CourseView: View {

var body: some View {

// We pass the actions to CourseUI, the same as before.

// But now, CourseUI accepts optional closures, too.

CourseUI(course: courseBinding,
didPressJoinCallAction: joinCall,
didPressScheduleAction: openScheduler,
didPressMessageButtonAction: openMessageInbox,
didPressTODOItemAction: didPressTODOItem,

)

// ... snip
}

// ... snip
}

Since CourseUTI isn’t part of the Course API, it doesn’t need declarative methods that return itself.

But because CourseView now passes optional closures, CourseUT is forced to act on that. With a
little imagination, we can decide to omit certain views if these methods aren’t called. For instance, if
didPressMessageButton is nil, we can make sure that CourseUI omits the message button.

216

Mobile System Design

9.8.4 Chaining forever

Now everything works as intended. We can call didPressJoinCall(action:) on CourseView, it
will return a new instance with that specific action coupled to the CourseV-iew instance. Then, once a
user presses a button, such as the ‘join call’ button, it will trigger the proper action.

Because the methods return a new CourseView, we can keep chaining them forever, if we so desire.

Silly enough, we can even call the same methods every time, since the type returned is always
CourseView. But it showcases how CourseViewis now composable.

For example, we can keep calling didPressSchedule () with four different actions.

CourseView(courseService: courseService, ID: ID)
.didPressSchedule(action: openSchedulerl)
.didPressSchedule(action: openScheduler2)
.didPressSchedule(action: openScheduler3)
.didPressSchedule(action: openScheduler4)

This isn’t different from repeatedly calling modifiers on other declarative types. Such as repeatedly
calling bold () on asingle Text element, hoping it becomes super-duper bold text.

Text(verbatim: "Why am I doing this?")
.bold()
.bold()
.bold()

But, since CourseView is within our control, we can decide what repeated actions will cause. You
can choose that calling didPressSchedule on CourseView only calls the last invocation, such as
openScheduler4. Or you might choose to trigger all actions.

If you want, you can add more protection measures to prevent misuse. For example, you can print or
throw errors when the same method is called multiple times.

217

Mobile System Design

9.9 Conclusion

In this chapter, we took a close look at how to decouple a view from its navigation. We’ve covered
common problems and used three different solutions to ensure a view is reusable across navigation
flows.

NOTE: This chapter is the end of the series where we handle single views, CourseView in particular.
Interesting how many lessons we can derive from a single view!

We’ve seen how we can use closures, interfaces, and even a declarative approach to design a view’s
API’s.

We haven’t even created a mature navigation flow. But that’s the point. Because the key takeaway is
that a view must be completely oblivious to navigation. It merely forwards messages such as “The user
tapped on the settings icon”.

Forwarding messages such as didTapGearIcon() is quite a low abstraction, compared to making
views call more high-level methods such as openSettings (). But, that’s precisely what allows a view
to be reused, so that a parent flow can focus on the navigation, instead.

A mental exercise is to pretend that you’re a vendor. Meaning, you deliver your views to teams in other
companies. Then you might not know how an external team implements your views.

With this perspective, a view directly calling openPaymentFlow() is an unreasonable assumption to
make for other companies.

That means decoupling becomes key. But even when decoupling, we’ve seen how closures are hard to
scale, and when using interface types, naming is crucial. Because if a view still calls openMail() on
an interface, it’s still assuming too much for a navigation flow.

Whenever you see a view call specific methods related to navigation, it might be good to pay extra
attention and see if it doesn’t assume too much.

Now that know how to decouple views from navigation, let’s continue to see how we can build adaptable
navigation flows.

218

Mobile System Design

9.10 What we covered

In this chapter, we covered:

« When a view can close or dismiss itself, it likely interferes with a parent flow.
« When a view calls methods related to navigation, it harms its reusability.
+ When a view is too aware of navigation, it makes it harder to embed it.

The action names are important for when a user presses. This removes any assumptions that a
view has about its navigation.

Instead of focusing on a specific navigation action, make the method names reflect the button
presses.

- Ensure that a view has a lower abstraction of button names, e.g. didPressCloseButton.

- Ensure that a parent (flow) has a higher abstraction for the specific action, e.g.
dismissView.

Closures as actions:

+ We can use closures as actions to decouple a view from its navigation.

« Closures as actions work well on a smaller scale.

« The more closures we pass, the more unwieldy a view becomes to set up.

« The more we nest a view, the more boilerplate we have to pass action closures.

Passing around a navigation type:

+ When the number of actions grows, it can be easier to pass a dedicated type related to navigation.
+ Aninterface can be a good way to decouple a view from its navigation.

« Naming is crucial when passing a type, even when using interface, because a view might still be
too aware of its navigation.

- Ensure that the interface reflects nothing about navigation.

Optional actions:

« When making a view reusable, you often want more configurability. E.g. hiding buttonsin a
different flow.

Optional views can increase complexity.

+ One approach to handle optionality is to use a declarative approach. This allows you to build up
aview.

« When using a declarative approach:

- You need to return the same type to enable chaining.
- It’s a convention that each modifier results in a valid view.

219

Want to read more?

Enjoyed this sample? There’s a lot more to discover in Mobile System Design! The book dives deep into
turning real-world challenges into robust mobile solutions, covering everything from planning and

testing to Ul architecture, reusable components, and scaling up an app, including modular design and

design systems.
Use code SAMPLIST for an exclusive 10% discount on the full book.

What you’ll learn:

« How to transform briefs into actionable development plans

« Strategies for writing testable, maintainable code with minimal effort
« Practical dependency injection without unnecessary complexity

« Decomposing designs into reusable, scalable Ul components

+ The art of building self-sufficient features that stay nimble

+ Managing complex navigation and crafting resilient Ul flows

+ When and how to implement a Ul library or design system

+ Scaling mobile architectures while maintaining quality

Buy the book at www.mobilesystemdesign.com and level up your mobile system design skills!

55

